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ABSTRACT 

 We analyze the random noise and the systematic errors of the positioning of the interference patterns in the long trace 
profilers (LTP). The analysis, based on linear regression methods, allows the estimation of the contributions to the 
positioning error of a number of effects, including non-uniformity of the detector photo-response and pixel pitch, read-
out and dark signal noise, ADC resolution, as well as signal shot noise. The dependence of the contributions on pixel 
size and on total number of pixels involved in positioning is derived analytically. The analysis, when applied to the LTP 
II available at the ALS optical metrology laboratory, has shown that the main source for the random positioning error of 
the interference pattern is the read-out noise estimated to be ~0.2 µrad. The photo-diode-array photo-response and pixel 
pitch non-uniformity determine the magnitude of the systematic positioning error and are found to be ~0.3 µrad for each 
of the effects. Recommendations for an optimal fitting strategy, detector selection and calibration are provided. 
Following these recommendations will allow the reduction of the error of LTP interference pattern positioning to a level 
adequate for the slope measurement with 0.1-µrad accuracy.  
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1. INTRODUCTION 

The long trace profiler (LTP) is the basic metrology tool for high accuracy testing the figure of X-ray optics with slope 
variations on the order of one µrad rms.1-6 The LTP optical schematic is a realization of the pencil-beam interferometer. 
In the interferometer, two parallel light beams, possessing a phase difference, are made to interfere at the focus of the 
Fourier transform lens. The resulted interference fringe pattern (Fig.1) recorded with a position-sensitive detector placed 
at the focus has two strongly marked peaks with a minimum between the peaks. The position of the minimum is a 
measure of slope of the mirror surface at the place of the beam reflection. The LTP records the local slope profile of a 
surface by measuring the reflection angle of a laser sample beam as the beam is transported across the surface by an air 
bearing carriage. Due to the translation of the optical sensor, the LTP has a unique capability for surface figure 
metrology of very long, meter size, mirrors.7-9 However, non-idealities of the translation mechanism as well as non-
idealities of the optical elements bring forth a number of systematic effects, which often dominate over the random 
noise of the LTP measurement.10-12 Some of the systematic effects have been analyzed and the methods for their 
suppression have been developed.13-17  

 

Figure 1: A characteristic interference pattern recorded with the 
LTP II at the ALS Optical Metrology Laboratory (OML). The 
LTP detector is based on a linear photo-diode array, consisting 
of 1024 pixels with a pitch of 25 µm and sagittal width of 
2.5 mm. With such a detector, number of points usually used for 
positioning is about 11. The focal distance of the LTP II is 
F=1.250 m; a coefficient of detector-position-to-slope-angle 
transformation is 1/(2F), where F is given in meters, and slope 
angle and beam position on the detector are measured in µrad 
and µm, respectively.  The solid line shows the best-fit second 
order polynomial fitted over data for 11 point (pixels). The 
parameters of the fit are presented in the figure. 
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In the present work, the random noise and the systematic errors of the positioning of the interference patterns in the LTP 
are analyzed. The analysis is based on linear regression methods18-21 briefly reviewed in Sec. 2. The estimations of the 
contributions to the positioning error of a number of effects, including non-uniformity of the detector photo-response 
and pixel pitch, read-out and dark signal noise, ADC resolution, as well as signal shot noise are given in Sec. 3. In 
Sec. 4 recommendations for an optimal fitting strategy, detector selection and calibration are provided. Following these 
recommendations will allow one to reduce the positioning error of LTP to a level adequate for the slope measurement 
with 0.1-µrad accuracy.  

2. BRIEF REVIEW OF THE LINEAR REGRESSION METHOD  

Taking into account a limited accessibility of Ref.19 chosen by the author as a preferable reference due to its compact 
format of comprehensive contents, we start from a condensed narration of the mathematical method aiming to provide 
the reader with a basis, self-sufficient for other applications. A more detailed discussion of the method with successive 
proofs of formulae presented here can be found in more fundamental books.18,20,21   

Let us consider two variables x, y such that for any given value of x there is a conditional distribution of y. The term 
regression is used in statistics to define the functional dependence of a mean value (expectation) of one variable on 
other variables and parameters: 

),()|( θη xxy =Ε ,                                                                                       (1) 

where θ  denotes a set of unknown parameters, which completely determine the function ),( θη x . The classical 
approach to finding the parameters θ  is to fit randomly selected observations of the bivariate distribution (x,y) to the 
function ),( θη x  by minimizing the sum of the squared deviations in the y-direction, the Method of Least Squares. The 
Linear Regression Method provides a way for calculation of the parameters θ  in the case when the function ),( θη x  
can be expanded into a linear (over the parameters θ ) combination of some known functions: 
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Keeping in mind the fitting of the LTP interference pattern, we limit ourselves to the Taylor expansion with the 
functions ρ
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In general, the observations yi can be written as 

iii xy εθη += ),( ,                                                                                          (4) 

where ε  is the error variable, which determines the spread of observations iy  around expectations )|( ii xyΕ : 
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Assuming that dispersion functions of the iε  are identical with equal variance 2σ , the best-fitting regression function 
(3) corresponds to the minimum of the sum of squared deviations of the n  observations: 
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while the parameters ρθ are varied 
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The system of equations (7) can be transformed to the normal equations 
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The solution of the system (8) can be simplified if one uses matrix approach. First, introduce a  )1( +× rn  matrix 
termed the regression matrix,  

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

r
nnn

r

r

xxx

xxx
xxx

K

MMMM

K

K

2

2
2
22

1
2
11

1

1
1
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and a )1(1 +× r vector of parameters, 
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where the prime denotes a transposed matrix. Note that the matrix approach is also applicable for the more general case, 
when, e.g. the first line in (9) looks like, 

[ ])(,),(),( 11110 xfxfxf rK .                                                                (11) 

In matrix form, equations (5) and (6) can be rewritten as 

θε ˆˆˆˆ Ay −= ,                                                                                                 (5`) 
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By differentiating, one can get the system of equations equivalent to Eqs. (7) and (8) 
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If the matrix AA ˆˆ ′ is a full rank matrix, the system solution is 

yAAA ˆˆ)ˆˆ(ˆ 1* ′′= −θ ,                                                                             (12) 

A singularity can appear in the case when the estimation is performed for an excessive number of parameters. In other 
words, excessiveness is observed if any lines of matrix Â are linearly dependent. It can be shown that the estimate (12) 

gives an unbiased estimate of the parameters θ̂ , meaning the expectation of *θ̂  is θ̂ . Moreover, the estimate *θ̂  is the 
most accurate among all possible unbiased estimates.  In the case of independent observations iy  with equal variance 

2σ , 

IyD ˆˆ 2σ= ,                                                                                          (13)  

the dispersions for parameters θ  can be found with a simple relation 

1211* )ˆˆ()ˆ)ˆˆ((ˆ)ˆ)ˆˆ((ˆ −−− ′=′′′′′= AAAAAyDAAAD σθ .                            (14) 

If the value of 2σ  is unknown, its unbiased estimate 2
eσ  can be found from the sum of squares of the differences 

between the extrapolating function (3) and the observations iy  and the difference between the number of observations 
n and the number of parameters )1( +r : 
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The problem can be easily generalized from the case of equal dispersions given by (13) to the case of observables with 
dispersions determined by a positive definite matrix Ŵ , known exactly: 

WyD ˆˆ 2σ= .                                                                                          (17)  

An elementary example of this kind is the dispersion of iε  weighted with a parameter iω  so that 
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that require to minimize the value of [compare with (6)] 
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In this case, the system of normal equations (8) will look like (assuming ni =∑ω ) 
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In order to write (18) in matrix form, we construct a diagonal matrix  
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which relates to the weight matrix Ŵ via equation 

VVVVW ′=′= ˆˆ;ˆˆˆ .                                                                                 (21) 

We construct also the ‘weighted’ regression matrix [compare with (11)] and ‘weighted’ matrix of observations 

AVA ˆˆ~ 1−=  ,                                                                                              (22) 

yVy ˆˆ~ 1−= .                                                                                                (23) 

Using these notations, the system (19) can be presented in matrix form analogous to (6`) 
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And therefore, the equations for finding parameters θ  will look similar to (12) as well as the equations for the 
dispersions of the parameters θ  will look similar to (14) 
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Finally, one can modify the equations (15) and (16) to get an unbiased estimate 2σ  for the ‘weighted’ observations 
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Note that expressions (24)-(26) are valid for more general case of dispersion matrix given by (17). 

3. APPLICATION OF REGRESSION ANALYSIS TO LTP FITTING 

The mathematical method reviewed in Sec. 2 provides a convenient tool for finding the parameters and their errors of 
the best-fit parabola while fitting the interference patterns in order to find the position of the central minimum. Consider 
fitting an interference pattern similar to one shown in Fig. 1. The fitting function is the second order polynomial: 

2
210),( xxx θθθθη ++= ,                                                                  (3.1) 

where x is a coordinate variable normalized to a pixel size. The corresponding regression matrix (9) is 3×n matrix with 
n -number of the point used for position fitting and the vector of parameters (10) is a 31×  rank vector. The fitting is 
performed to find the position of the central minimum of the interference pattern, which can be estimated via the 
regression parameters, and to estimate the mean square error of the position via variations of the parameters: 
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where )( *
1

2 θs  and )( *
2

2 θs are the estimations for corresponding dispersions, equal to the diagonal elements of the 
error matrix (25). Note that equation (3.3) assumes independence of the parameters, i.e. the corresponding non-diagonal 
correlation coefficients are equal to zero. 

Below, we consider the positioning errors related to different sources of random noise and systematic errors while 
measuring the light intensity with the LTP photo-diode array (PDA). 

3.1. Positioning errors due to intensity independent noise: photo-detector dark signal and read-out error 

In the case of random noise, independent of the value of the measured light intensity ŷ , the variations of ŷ  are 

accounted for with a diagonal dispersion matrix (13) of rank nn×  with parameter 2σ , IyD ˆˆ 2σ= . For simplicity, 
choose the set of variables ( )ix  as a centered set of )1(2 += mn pixels 

( ) ( )mmiimmxi ),1(,,,,1,0,1,,,),1(, −−−−−−= LLLL .                                   (3.1.1) 

With such a choice, the elements of matrix )ˆˆ( AA′  depend only on the value of m  
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The inverted matrix 1)ˆˆ( −′ AA  expressed in the terms of Eqs. (3.1.3) is: 
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The estimated dispersions of the regression parameters, equal to the diagonal elements of (14) after substitution (3.1.3) 
and (3.1.4), are 
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Note the very strong dependence of the dispersions on the number of points )12( += mn  used for fitting. At reasonably 

large n , 3*
1

2 )( −∝ ns θ  and 5*
2

2 )( −∝ ns θ . Consequently, the relative position error minmin
2

minmin )( xxsxx ≡δ  
strongly depends on n . In order to illustrate the dependence, the corresponding calculations were performed assuming 
the point set (3.1.1) such that 1min ≈x  pixel. Then, *

2
*

1 2θθ ≈  and the normalized relative error of positioning is: 
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Figure 2. (a) Dependence of the normalized relative error of positioning given by Eq. (3.1.6) on number of points n used 
for fitting and (b) corresponding absolute error of the LTP slope measurement due to the PDA dark current calculated at the 
parameters of experiment shown in Fig. 1 (see text for more details).  

The result of the calculation is presented in Fig. 2. The noticeable feature is very steep dependence at smaller n . At 
increasing number of points from 7=n  to 15=n , the considered random noise is suppressed by factor more than four.  

Figure 3 shows the dark signal measured in the LTP sample channel without incident light. The signal is due to the dark 
current of the PDA. The temporal variation of the dark current is one of the sources for random noise while the light 
intensity is measured. Variation of the dark current from pixel to pixel is a source for a systematic error. In our case, the 
random dark current variations seen in Fig. 3a with standard deviation of 8.6≈dcσ  bits (ADC digits) are significantly 
larger than the systematic pixel-to-pixel variations remaining in Fig. 3b after averaging over 34 consequent exposures 
similar to one shown in Fig. 3a.  

Let us evaluate the absolute value of the positioning errors due to the random fluctuations of dark current (Fig. 3a). 
From the fit parameters presented in Fig. 1, we can calculate the regression parameters 639*

2 ≈θ  bits/(pixel)2 and 

pixel12 *
2

*
1 ⋅≈ θθ 1278≈ bits/pixel for the set of points of the kind (3.1.1) shifted to get 1min ≈x  pixel. For 11=n  

points used to fit the central part of the pattern in Fig. 1, the positioning error due to random dark current noise is  
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that corresponds to very small contribution of 006.0≈dcδα µrad into the slope error – compare with Fig. 2b. 



 
 

Figure 2: Dark signal in the LTP sample channel: (a) dark signal for one particular exposure; (b) dark signal averaged over 
34 consequent exposures. The systematic pixel-to-pixel variations of the dark signal are clearly seen in plot (b). The 
intensity of light is shown in units of 16-bit analog-to-digit converter (ADC) output signal. 
 

Other sources of the LTP positioning error, e.g. read-out error, electronics noise, which are independent of the value of 
the light intensity detected, can be treated in the same way.  

The read-out error is due to internal switching in PDA and depends on the array design and read-out method. For a PDA 
similar to one used in our LTP,22 the peak-to-peak fixed pattern (systematic) dark signal due to all switching transient 
effects is usually stated to be less than 1% of the saturated amplitude.23 Assuming the saturated amplitude of 6⋅104 ADC 
output digits (ADC with 1016 bits) and a value of the read-out effect of approximately 0.3%, the read-out error can be 
estimated to be 200≈roσ ADC digits. The corresponding positioning error at 11=n  is [compare with (3.1.7)] 

( ) 22
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2minmin 102)(4/)( −⋅≈+≈ msmsxx ro θσδ pixels 5.0≈ µm.                      (3.1.8) 

The error in slope measurement due to the read-out error estimated in this way is 

2.0≈roδα µrad    at 11=n .                                                                                 (3.1.9) 

At the same time, the slope error due to the 216-bit ADC resolution (~1 digit) is only 001.016 ≈−ADCδα µrad  ( 11=n ). A 
detector with significantly lower resolution, say with 210-bit, or even 28-bit, ADC, can be more than adequate for the 
LTP application, providing the slope error due to digitization is equal to 

06.010 ≈−ADCδα µrad    at 11=n .                                                                      (3.1.10) 

The effect of substitution of the LTP detector PDA by another one with pixel pitch smaller by factor of k  can be easily 
understood, if a measurement with such a PDA is thought of as a series of k independent measurements with the 
original PDA with the smaller pixel size. It is obvious that averaging over k independent measurements provides 
improvement of positioning error by a factor of k .  

3.2. Positioning error due to photoresponse non-uniformity of the photo-diode array 

One of the major LTP systematic effects relates to the PDA photoresponse non-uniformity, that is the relative output 
signal difference of the pixels under same illumination conditions. The photoresponse non-uniformity can be thought as 
a pseudo-random distribution of the pixel sensitivity characterized with the expectation value of one and the standard 
deviation prnσ .  As a magnitude of prnσ , one can use a value of non-uniformity of the PDA photoresponse for the 
neighbor pixels that is usually specified to be about 2-3%.22,23  
 
At the assumption, the regression equation (4) corrected to include the error due to the photoresponse non-uniformity is:  
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where *
iy  is the PDA signal determined from the evaluated parameters *

0θ , *
1θ , and *

2θ . Recall that a star label is used 
to separate a variable from its evaluation.  The corresponding dispersion of iε is 

( ) ( )2*22*)()( iprniii yyDD σξε =≈ .                                                         (3.2.2) 

The regression (3.3.1) can be resolved by introducing a weight matrix prnŴ  with nonzero elements,   

=ii,ω  ( )2*
iy .                                                                                       (3.2.3) 

And the solution of the regression can be found by iteration. First, replacing the *
iy  values in the weight matrix with the 

measured variables iy , the parameters *
0θ , *

1θ  and *
2θ  are evaluated from equation (24). Next, the found values of the 

polynomial parameters are used to estimate *
iy  and construct the corrected weight matrix, which is used then to find the 

second approximation for *
rθ  via Eq. (24), and so on. The parameters found during the iteration procedure can be used 

to evaluate the positioning error via Eqs. (25) and (3.3). The corresponding numerical calculation accounting for 
02.0≈prnσ  for the interference pattern shown in Fig. 1 gives 

         radpixelsx µδαδ 3.0;03.0min ≈≈  at 11=n and radpixelsx µδαδ 2.0;02.0min ≈≈ at 23=n .       (3.2.4) 

The dependence of the positioning error on the number of points used for fitting is shown in Fig. 4. The dependence has 
asymptotic behavior 21−∝ n . Note that the systematic error due to photoresponse non-uniformity of the detector 
considered in this section can be suppressed if an appropriate calibration procedure of the detector with a flat-field light 
source is used. 

 

 
 
 

 
Figure 4: Dependence of the absolute error of the LTP 
slope measurement due to the photoresponse non-
uniformity of the PDA on number of points used for 
fitting. The calculation was performed for the 
parameters of experiment shown in Fig. 1. 
 

 

3.3. Non-uniformity of the effective pixel pitch 

Above, we have supposed the exact knowledge of the position of each pixel ix . However, this assumption can be 
broken due to the limited tolerance of the detector chip production process. For the used PDA, the possible range for the 
standard deviation σP of the pixel positions from an ideal pattern with uniform pitch distribution can be estimated to be 
between 0.1 µm and 2 µm. The lower limit comes from the size tolerance characteristic for the CMOS process of the 
PDA production. The upper limit can be obtained assuming that the photoresponse non-uniformity of ~2% originates 
from the non-uniformity of the pixel pitch and size.  

The non-uniformity of the effective pixel pitch leads to a systematic error of beam positioning. The magnitude of the 
error can be reasonably estimated if one assumes a pseudo-random character of the pitch non-uniformity. With this 
assumption, the pixel number variable ix  is a fixed quantity, while the unobserved true value of the −thi pixel position 
is a random variable. Such a situation, termed the Berkson case (see, e.g.,18 Chapter 5.7), can be resolved with the 
standard regression procedure with the error terms in equation (4) corrected to include the error of the pixel position:  



 
 

 
 

.2

,)()(

2
2

21

2
210

2
210

iiiiii

iiiiiiiii

x

xxxxy

δθδθδθβε

εθθθβδθδθθ

+++=

+++=+++++=
                     (3.3.1) 

In the expression for combined error iε   (3.3.1), the term 2
2 iδθ can be omitted because of 1<<iδ  (according to the 

limit of 1.0≤iδ pixel mentioned above) 

).2(2 2121 iiiiiiii xx θθδεδθδθβε ++=++≈                                                  (3.3.2) 

Due to independence of iβ  and iδ , the dispersion of iε is 
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21 )2()()2()()()( ipiiiii xDxDDD θθσβθθδβε ++≈++= .                   (3.3.3) 

In the last equation, the dispersion is expressed in terms of evaluated parameters *
1θ  and *

2θ ; and a pseudo-random 

distribution of the pixel pitch is accounted with the parameter of pixel position dispersion 2
pσ .  Similar to the case of 

photoresponse non-uniformity (Sec. 3.2), the solution can be found by iteration. Assuming the same weight for all 
points, the estimate for *

1θ  and *
2θ  is first evaluated from equation (12). Next, using the found values of the polynomial 

parameters, the first approximation for the weight matrix is determined, which is used then to find the second 
approximation for *

1θ  and *
2θ  via Eq. (24), and so on.  

In order to estimate a contribution of the pixel pitch non-uniformity into the positioning error, let us assume 0)( ≡iD β . 

The residual dispersion matrix can then be written as a product of the pixel dispersion parameter 2
pσ  and a diagonal 

weight matrix pŴ  with nonzero elements   
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     Let us choose the set of variables ( )ix  as a centered set of )1(2 += mn pixels, analogous to (3.1.1), 
( ) ( )mmiimmxi ),1(,,,,1,0,1,,,),1(, −−−−−−= LLLL , and such as 21min ≈x pixel. With such a choice, the matrix 

)ˆˆˆ( 1 AWA p
−′  has shape similar to (3.1.2) 
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The dispersion matrix of the regression parameters is 
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where Ẑ is 33× matrix with the elements )(, nz lk  dependent only on the number of points n  used for fitting.  

Note )()2()( 2,2
2*

2
2*

1
2 nzs p θσθ =  and )()2()( 3,3

2*
2

2*
2

2 nzs p θσθ = . Therefore, the positioning error is  



 
 

 
 

)()(2 3,32,2minmin nznzxx p +≈ σδ .                                                  (3.3.8) 

Deriving Eq. (3.3.8), we used equality *
2

*
1 θθ ≈ , which is valid at 21min ≈x  [compare with (3.2)]. 

For the example of the LTP interference pattern shown in Fig. 1, numerical evaluation gives: 
2

2,2 1058.7)11( −⋅≈z , 3
3,3 1096.9)11( −⋅≈z   and  2

2,2 1095.3)23( −⋅≈z , 3
3,3 1004.1)23( −⋅≈z .     (3.3.9) 

And at 2≈pσ µm, 21min ≈x  

           radmx µδαµδ 3.0;73.0min ≈≈ at 11=n  and radmx µδαµδ 2.0;50.0min ≈≈  at 23=n ,         (3.3.10) 

suggesting scaling 21−∝ n  at larger n . Recall that the effect of the non-uniformity of the pixel pitch estimated in this 
section has systematic character and, therefore, the corresponding error cannot be suppressed by multiple 
measurements. One of the way to suppress the error is to precisely calibrate the pixel pitch with accuracy of ~ 0.1 µm. 
More practical way is to increase the number of the fitted points by replacing the existing PDA with a detector with 
higher spatial resolution (smaller pixel pitch).  

3.4. Positioning error due to signal shot noise 

To complete the analysis of the LTP error sources, let us consider the case of signal shot (Poisson) noise:  

.; **2
210

2
210 iiiiiiiiiii yykxxxxy ζεεθθθζθθθ ≈+++=+++=                 (3.4.1) 

The transformations in (3.4.1) were performed to construct a regression, which can be solved with the Least Square 
Method. For this purpose, new error variables iε  with equal variance were built. The variance iε  is unbiased and 
independent on the measured signal magnitude. The dispersion of iε  is 1)( =iD ε . The constant k is introduced to 
normalize the shot noise of the photo-electrons to the units of bits of the ADS output signal. In our case, 02.0≈k . The 
regression (3.4.1) has the normal ‘canonical’ shape for measurement with weighted points described with a diagonal 
weight matrix snŴ  with nonzero elements given by 

=ii,ω  *
iy .                                                                           (3.4.2) 

The parameters of the regression (3.4.1) can be found with an iteration procedure. The found parameters can be used to 
evaluate the positioning error via Eqs. (25) and (3.3). The corresponding numerical calculation for the interference 
pattern shown in Fig. 1.1 gives  

                                                            radpixelsx µδαδ 34
min 102;102 −− ⋅≈⋅≈              at 11=n ,                           

radpixelsx µδαδ 34
min 101;1012.1 −− ⋅≈⋅≈          at 23=n .                          (3.4.3) 

Note that in the considering case of the signal shot noise, the dependence of the positioning error on the number of 
points used for fitting has asymptotic behavior 4/3n∝ . This asymptote is due to the fact that at our choice of the 
symmetrical set of points { }ix  (3.1.1), an increase of n  correlates with adding the variables iy  with larger values and, 
therefore, larger statistical weight of the measurement.  

4. CONCLUSION ABOUT POSITIONING ERROR AND FITTING STRATEGY 

Table 1 summarizes the results obtained for positioning error due to the different sources of LTP II noise. The table also 
contains the found asymptotic dependence of the effects on the number of points used to determine the position of the 
interference pattern minimum. 

 



 
 

 
 
 
Table 1. LTP II positioning error due to the different sources of noise. 
 

Slope error (µrad) Noise source Position error  
(pixel) at 11=n  11=n  23=n  

Asymptotic with n  

PDA dark signal 6⋅10-4  0.006  0.002 2/1−∝ n  
Read-out noise 2⋅10-2  0.2  0.07 2/1−∝ n  
ADC resolution (at 210 bits)  2⋅10-3  0.06  0.02 2/1−∝ n  
PDA photo-response (at 2%) 3⋅10-2  0.3  0.2 2/1−∝ n  
Pixel pitch non-uniformity (at 10%) 3⋅10-2  0.3  0.2 2/1−∝ n  
Signal shot noise 2⋅10-4  0.002  0.001 4/3−∝ n  

 
A significant improvement of the positioning error can be obtained with a more sophisticated fitting procedure, which 
has to allow extending the number of points used for fitting. Both the random and the systematic errors have strong 
dependence on the number of points. Although the dependence has a shape 2/1−∝ n  asymptotically at large n , in the 
range of n  practically available at the present configuration of the LTP, the dependence is even much stronger. 

Replacement of the existing PDA with another one with significantly smaller pixel pitch has an additional advantage. 
The estimation presented in Sec. 3.1 shows that a PDA camera with 210-bit ADC is adequate for the LTP measurement 
with accuracy of  ~ 0.1 µrad.  

Note that in the present work, we have estimated the slope error for one LTP arm. However, the same error sources 
should be accounted for both the sample and the reference arms. Assuming independence of the errors in the arms, the 
estimate for the total slope measurement error has to be increased by a factor of 2  compared with the values given in 
Table 1. 

 

 

 

 

Figure 5: The distribution of the intensity signal 
variation around the best fit second polynomial. The 
dashed curve is plotted just to guide the eye (see 
discussion in the text). 

In conclusion, let us discuss the compatibility and reliability of the second-order polynomial to fit the LTP interference 
pattern. Figure 5 shows the distribution of the intensity signal variations around the best fit second polynomial found by 
the regression analysis method. The corresponding standard deviation is 273≈σ ADC digits. The dashed curve is 
plotted just to guide the eye. It seems that the curve suggests the systematical character of the variation distribution. 
However, the total amount of points, 11=n , is too small in order to make a positive conclusion about the systematic 
character of the variation. An increase of n , desirable for improving the positioning accuracy, can lead to a significant 
systematic deviation of the second-order polynomial model from the shape of the interference feature under 
consideration. In this case, a more complicated regression model has to be used. 
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